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Spontaneous symmetry breaking inU„N… invariant ensembles with a soft confinement potential

M. P. Pato
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05315-970 Sao Paulo, SP, Brazil
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A solution is provided to the problem of finding the probability distribution of elements of a random matrix
in terms of the distribution of eigenvalues and eigenvectors. It is then proved that completely isotropic eigen-
vectors can become localized when the eigenvalues increase exponentially. This general result confirms the
prediction of a spontaneous breaking of the unitary transformation,U(N), invariance of random matrix en-
sembles, in the limit of extremely soft confinement. An algorithm is implemented to generate eigenvectors with
broken symmetry. The theory is then verified numerically.

PACS number~s!: 05.45.2a, 05.40.2a, 05.60.Gg, 72.15.Rn
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The ensembles of random matrices@1# introduced in the
1950’s by Wigner have found, especially in the last two d
cades, broad application in many areas of physics@2#. In
their standard version, which constitutes what is usua
called random matrix theory~RMT!, the matrix elements are
Gaussian distributed and the joint probability of eigenvect
and eigenvalues factorize, with the latter obeying
Wigner-Dyson~WD! statistics while the former behave a
isotropic eigenfunctions in Hilbert space. The main char
teristic of WD is the strong correlation caused by the pr
ence of repulsion between levels, materialized in the Wig
distribution for the level spacings. WD statistics are expec
to be observed in chaotic systems of few or many degree
freedom@3# and, also, in disordered quantum systems in th
metallic phase@4# .

Contrary to WD, the superposition of an uncorrelated
quence of levels is known to follow Poisson statistics@1#. In
this case, since there is no level repulsion to prevent, t
can cluster, and the spacing distribution has its maximum
zero separation. The lack of correlation in the eigenfuncti
is expected to correspond to localized states that d
‘‘talk’’ to each other and show a multifractal behavior. The
kinds of statistics are expected to be found in regular syst
and in the insulator phase of quantum disordered syst
@5#. A statistical model with these properties would be t
ensemble of large diagonal matrices whose elements
Gaussian distributed.

In recent applications of statistical models of spectra,
crossover from the WD to Poisson statistics has becom
major issue. Since RMT ensembles are constructed by
quiring invariance with respect toU(N), i.e., unitary transfor-
mations, a direct way to generate ensembles to interpo
RMT and Poisson statistics is to impose a condition t
breaks, by construction, this invariance. This is done by
troducing a preferred basis, which means, in practical ter
going from a complete matrix space to a subspace of sp
diagonal or near-diagonal, matrices. This procedure has b
followed, for example, in the construction of deformed e
sembles@6#, of random band matrix ensembles@7#, and also
of the ensembles of Refs.@8# and @9#.

Another approach, quite different in principle, consists
trying to obtain the transition without breaking the rotation
invariance of RMT. In this case, the eigenvalue distribut
has the usual RMT form
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P~x1 ,x2 , . . . ,xN!5CN expF2 (
k51

N

V~xk!G)
j . i

uxj2xi ug,

~1!
where the symmetry parameterg has the valuesg51, 2,
and 4 for the orthogonal, unitary, and symplectic cases,
spectively, andCN is a normalization constant. In Eq.~1!, the
stringent parabolic choice forV(x) of RMT is, then, re-
placed, by a potential that asymptotically provides only
soft confinement to the eigenvalues@10,11#. In Ref. @11#, it
was argued that one should expect a departure from the
statistics for potentials that lead to an ‘‘incompressib
phase’’ in which the level density becomes independen
the total number of eigenvaluesN, in the limit in which N
→`. As is well known, the semicircle law that gives th
level density for the Gaussian ensembles grows asAN for
largeN.

Numerical simulations and, also, analytical derivati
@11,12# have shown that a nonstandard behavior indeed
curs for a logarithmic confinement of the formV(x)
5(1/b)ln2uxu when the parameterb is made large. In this
case, the average density, calculated with Dyson’s me
field approximation, behaves as

r~x!}
1

uxu
. ~2!

In this limit of largeb, however, the spacings between leve
are not distributed according to Poisson but, instead, follo
new Poisson-like distribution which is the same for the th
symmetries classes, i.e., the orthogonal, the unitary, and
simplectic @11#. Some new properties are also exhibited
the eigenvalues, such as lack of translational invariance
the presence of a long-range correlation that prohibits
eigenvalues from being located at symmetric distances f
the origin. These features and, also, the idea that there m
be a connection between eigenvalue and eigenvector d
butions, have suggested that there should be a spontan
breaking of the rotational symmetry@13#.

The purpose of this paper is to show analytically how t
spontaneous symmetry breaking occurs and to presen
algorithm that generates numerically eigenfunctions w
broken symmetry. This will be done by first constructing
solution of what one may call the inverse problem sin
contrary to the usual situation, here the distributions of
R3291 © 2000 The American Physical Society
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genvalues and eigenvectors are given and from them,
probability distribution of the matrix itself is to be derived
In other words, a meaning will be given to the formal equ
tion

P~M !5KN expF2
1

b
tr~ ln2uM u!G , ~3!

and it will then shown that in the limitb→`, the probabilty
P(M ) becomes singular, yielding, as a consequence, the
calization of the eigenvectors. To be specific and to simp
the derivation, only the orthogonal case,g51, will be con-
sidered.

TheU(N) invariance of the ensemble implies eigenvect
completely isotropic in theN-dimensional space with the re
strictions imposed by the normalization and the orthogon
ity. If we look at a particular eigenvector, say,uxk& of the
eigenvaluexk , and forget all others, the distribution of it
components,Ci

k5^ i uxk& with respect to a set of base vecto
u i &, can be written as

P~C1
k ,C2

k , . . . ,CN
k !5p2N/2GS N

2 D dF12(
i 51

N

~Ci
k!2G . ~4!

From this equation, the distribution

P~y!5

GS N

2 D
GS 1

2DGS N21

2 D y21/2~12y!(N23)/2 ~5!

for the strengthy5C2 follows, derived by integration into
all components but one, which reduces to the well kno
signature of RMT, the Porter-Thomas law@14#, for largeN.

Considering now the eigenvalue distribution, Eq.~2! sug-
gest the substitution@11#

x5sgn~j!exp~buju! ~6!

that maps the variables onto the domain2(N/2)<j
<(N/2). In terms of this new variable, the eigenvalue jo
probability distribution becomes

P~j1 , . . . ,jN!5CN expF2b(
k51

N

~jk
22ujku!G

3)
j . i

usgn~j j !exp~buj j u!

2sgn~j i !exp~buj i u!u.

Assuming the eigenvalues are ordered as

uj1u.uj2u.•••.ujNu, ~7!

the distribution can be rewritten as

P~j1 ,j2 , . . . ,jN!5CN expF2b(
k51

N

~jk
22kujku!G ~8!
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or, finally @11#,

P~j1 ,j2 , . . . ,jN!5)
k51

N A b

4p
expF2bS ujku2

k

2D 2G . ~9!

The scaled eigenvalues therefore place themselves ar
the points6k/2 for k51,2, . . . ,N, with the restriction that
symmetric sites are not occupied simultaneously, which
plies in the long-range correlation cited above. This res
has been confirmed by numerical simulations@11#.

Matrix elements are connected to eigenvalue and eig
vector components through the relation

Mi j 5 (
k51

N

xkCi
kCj

k . ~10!

Combining Eqs.~10! and~4!, we can write the probability of
a given diagonal elementMii as

P~Mii !5p2N/2GS N

2 D E dNxdNCkdFMii 2 (
k51

N

xk~Ci
k!2G

3dF12(
i 51

N

~Ci
k!2GP~x1 , . . . ,xN!. ~11!

This equation establishes the general connection betwee
probability distribution of diagonal matrix elements and t
probability distributions of the eigenvalues and eigenvect
when they are isotropically distributed.

To show how the breaking of the rotational invarian
occurs, it is instructive to begin by considering an ensem
of 232 matrices. In this case, the components of the t
eigenvectors can be expressed as functions of the angu,
which gives the direction of the eigenvector in the plane
the base. In terms ofu, Eq. ~10! becomes

M115x1 cos2u1x2 sin2u,

M125~x12x2!sinu cosu, ~12!

M225x1 sin2u1x2 cos2u.

Keeping the two eigenvalues at fixed values,x1 ,x2, the prob-
ability P(M11,x1 ,x2) that the first diagonal matrix elemen
has a valueM11 is given by

P~M11,x1 ,x2!5
1

2pE0

2p

dud~M112x1 cos2u2x2 sin2u!

~13!

or, after the integration,

P~M11,x1 ,x2!5
1

p

1

A~x12M11!~M112x2!
. ~14!

Introducing the scaled variablesj1 , j2, and j with M11
5sgn(j)exp(bj), we have
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P~j,j1 ,j2!5
1

p

exp@b~ uju2uj1u!#

A$sgn~j1!2sgn~j!exp@2b~ uj1u2uju!#%

1

A$sgn~j!exp@2b~ uj1u2uju!#2sgn~j2!exp@2b~ uju2uj2u!#%
,

~15!
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where it was assumed thatux1u.ux2u. Taking the limit b
→`, it follows that

P~M11!→H 0 if M11Þx1

` if M115x1 ,
~16!

which means that for largeb the probability of finding a
value ofM11 with a value other thanx1 vanishes. Replacing
this value in the first Eq.~12! we obtain

x1 sin2u5x2 sin2u,

which can only be satisfied ifu50,p. For these two values
the matrix is diagonal and the eigenvectors are necessari
the formCi

k56d ik .
On the other hand, if the off-diagonal element is cons

ered, we find the probability distribution

P~M12,x1 ,x2!5
1

p

4

A~x12x2!224M12
2

,

in which case, the angle has the valuesu56p/4 or 63p/4.
Considering now ensembles with matrices of sizes gre

than 2, the integrals in the components in Eq.~11! can be
performed by introducing Fourier representations for thed
functions. Again keeping the eigenvalues fixed, we have
probability distribution

P~Mii ,x!5p2N/2GS N

2
D pN/2

~2p!2

3E
2`

` E
2`

` dk1dk2 exp~ ik1Mii 1 ik2!

APk51
k5N@ i ~k1xk1k2!#

, ~17!

making the substitutionk25k1k,

P~Mii ,x!5p2N/2GS N

2 D pN/2

~2p!2E2`

`

dk1k1
2[(N/2)21]

3sgn~k1!E
2`

` dk2 exp@ ik1~Mii 1k2!#

APk51
k5N@ i ~xk1k2!#

.

Reintroducing the integrations in theC variables, the integra
tion in k2 can be performed, giving ad function that allows
thek1 integration also to be performed, and one arrives at
expression

P~Mii ,x!5p2N/2GS N

2 D E dNC

~( i 51
N Ci

2!(N/2)21

3expF2 i (
k51

N

~Mii 2xk!Ci
2G .

Using the Fourier representation@15#
of

-

er

e

e

S (
i 51

N

Ci
2D 2(N/2)11

5
1

2GS N

2
21D sin

Np

4

E dk1uk1uN/2 for 22

3expS ik1(
i 51

N

Ci
2D ,

the integrations in theC variables are performed and we fin

P~Mii ,x!5p2N/2GS N

2 D 1

2GS N

2
21D sin

Np

4

3PE
2`

` uk1u(N/2)22dk1

APk51
k5N@ i ~xk2Mii 1k1!#

,

whereP stands for the Cauchy principal value. Since th
equation was derived without any assumption about the
genvalues, it gives the general dependence of diagonal
trix element distribution for isotropic eigenvectors.

To see how the limitb→` of our ensemble, i.e., eigen
values distributed according to Eq.~9!, introduces localiza-
tion in the above expression, we start by making the sub
tution k15ux1uk2 , x1, denoting the largest eigenvalue

P~Mii ,x!

;
1

ux1u
PE

2`

` uk1u(N/2)22dk1

Au~x12Mii !/ux1u1k1uuk12Mii /ux1uuN21
.

We immediately see that forMii Þx1 , P(Mii ,x) vanishes
when b→`. On the other hand, ifMii 5x1 then the above
integral can be asymptotically written as

P~Mii ,x!;
1

ux1u
PE

2`

` dk1

k1
2Au121/k1uN21

,

which diverges because of the singularity atk151. Now,
makingMii 5x1, Eq. ~10! becomes

(
k52

N

~x12xk!~C1
k!250.

Dividing it by x1, and taking the limitb→`, we find that
C1

k50 for kÞ1 soC1
k56d1k .

Considering now the probability distribution of other m
trix elements, the eigenvaluex1 will be absent. Therefore
assumingx2 to be the second largest eigenvalue, we are
ing to find that the next matrix element, say,M22, has to be
equal to it and, as before,C2

k56d2k . Proceeding with this
calculation, we are going to conclude what we want to pro
namely, that in the limit of largeb, we have an ensemble o
diagonal matrices with completely localized eigenvectors
the formCi

k56d ik .
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In principle, the same procedure can be used to disc
what happens with the distributions of the off-diagonal e
ments. But it is more convenient to introduce here a differ
approach. First we observe that the probability distribution
the matrix elements concentrates at the extremal value
the matrix elements, as functions of the eigenvectors kee
the eigenvalues fixed. To see that this is indeed the cas
the above results for the diagonal elements, let us maxim
Eq. ~10! with i 5 j . Introducing a Lagrange multiplier,l, to
take into account the normalization of the eigenvector,
get, by differentiation, the set ofN equations

~xk2l!Ck
i 50, k51,N,

whose immediate solutions arel5xk andCk
i 56d ik with k

51,N, in agreement with prior results.
Considering now off-diagonal matrix elements, we ne

three Lagrange multipliers to incorporate the two normali
tions and the orthogonality condition. Differentiation, the
leads to 2N equations

~xk2l1!Ck
j 2l2Ck

i 50,

~xk2l1!Ck
i 1l3Ck

j 50, k51,N

that have the solutionsl15(xk1xl)/2, l25l35(xk2xl)/4,
andCk,l

i 5Ck,l
j 561/A2, where (k,l ) is a given pair of indi-

ces and the other components vanish.
Therefore, when the symmetry is broken, one should

pect the distribution of the strength,y5C2, to be concen-

trated at the pointsy50,1
2 ,1. To verify this prediction, a

numerical simulation was performed whose results
shown in Fig. 1. In the calculation, Gaussian orthogonal
sembles~GOEs!, i.e., isotropic eigenvectors, were generat
and matrix elements were obtained using Eq.~10! with ei-
genvalues given byxk5exp(bk/2). To induce the symmetry
breaking, a small perturbation is added by multiplying t
off-diagonal terms by the factor 0.99999. The matrix is th
diagonalized. That is how the two histograms of Fig. 1 w
obtained, while the solid line corresponds to GOE, i.e.,
~5!. As can be seen in the figure, the perturbation has
effect for smallb. However, for the value,b540, the dis-
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tribution changes dramatically, with a substantial increase
the maximum at the origin and the appearance of peaks
y5 1

2 andy51, as predicted.
In conclusion, it has been analytically proven, and n

merically verified, that completely isotropic eigenvectors c
become localized if the eigenvalues increase exponentia
This result is general and confirms the prediction@13# that
theU(N) invariance of a random matrix ensemble with a so
confinement potential,V(x)5(1/b)ln2uxu, is broken in the
limit of large values of the parameterb. Rigorously, the
result is valid only in the limitb→`. An investigation into
what happens for finite or even smallb is lacking. The
method, however, especially its implementation as an al
rithm to generate eigenvectors, opens the possibilty o
more complete investigation of the critical point of diso
dered quantum systems, using soft confinement ensemb
As a last remark, although for simplicity only the orthogon
case was considered, it should be straightforward to ext
the analysis to the unitary and simplectic ensembles.

M.P.P. was supported in part by the CNPq-Brazil a
FAPESP.

FIG. 1. Histograms ofy5C2 for the two indicated values of the
parameterb. The solid line is the GOE result, Eq.~5!. The calcu-
lations correspond to matrices of dimensionN520.
t.

s,
@1# M.L. Mehta, Random Matrices~Academic Press, Boston
1991!.

@2# T. Guhr, A. Müller-Groeling, and H.A. Weidenmu¨ller, Phys.
Rep.299, 189 ~1998!.

@3# O. Bohigas, M.J. Giannoni, and C. Schmit, Phys. Rev. L
52, 1 ~1984!.

@4# L.P. Gorkov and G.M. Eliashberg, Zh. E´ksp. Teor. Fiz.48,
1407 ~1965! @Sov. Phys. JETP21, 940 ~1965!#.

@5# B.L. Altshuler, I. Kh. Zharekeshev, S.A. Kotoshigova, and B
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