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Spontaneous symmetry breaking inU(N) invariant ensembles with a soft confinement potential
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A solution is provided to the problem of finding the probability distribution of elements of a random matrix
in terms of the distribution of eigenvalues and eigenvectors. It is then proved that completely isotropic eigen-
vectors can become localized when the eigenvalues increase exponentially. This general result confirms the
prediction of a spontaneous breaking of the unitary transformati¢N), invariance of random matrix en-
sembles, in the limit of extremely soft confinement. An algorithm is implemented to generate eigenvectors with
broken symmetry. The theory is then verified numerically.
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The ensembles of random matriddg introduced in the N
1950’s by Wigner have found, especially in the last two de- P(Xy,X5, ... XN)=Cynexpg — 2 V(Xy) H |xj —xi|?,
cades, broad application in many areas of phy$#s In k=1 1= 0

their standard version, which constitutes what is usuallyyhere the symmetry parameter has the valuegy=1, 2
called random matrix theorfRMT), the matrix elements are ang 4 for the orthogonal, unitary, and symplectic cases, re-
Gaussian distributed and the joint probability of eigenvectorgpectively, andCy, is a normalization constant. In Et), the

an.d eigenvalues factorize, with the latter obeying thestringent parabolic choice fov(x) of RMT is, then, re-
Wigner-Dyson(WD) statistics while the former behave as placed, by a potential that asymptotically provides only a
isotropic eigenfunctions in Hilbert space. The main characygft confinement to the eigenvalug0,11. In Ref.[11], it
teristic of WD is the strong correlation caused by the presyas argued that one should expect a departure from the WD
ence of repulsion between levels, materialized in the Wignektatistics for potentials that lead to an “incompressible
distribution for the level spacings. WD statistics are expecteq,hasen in which the level density becomes independent of

to be observed in cha_otic_systems of few or many degrees _qfqe total number of eigenvaluég in the limit in which N
freedom[3] and, also, in disordered quantum systems in their , . As is well known, the semicircle law that gives the

metallic phasg4] . o level density for the Gaussian ensembles grows/Rsfor
Contrary to WD, the superposition of an uncorrelated S€largeN.

quence of levels is known to follow Poisson statisfies In Numerical simulations and, also, analytical derivation

this case, since there is no level repulsion to prevent, they11 19 have shown that a nonstandard behavior indeed oc-
can cluster, and the spacing distribution has its maximum at,,,s for a logarithmic confinement of the forna(x)

zero separation. The lack of correlatio_n in the eigenfunctione:(1/B)|n2|x| when the parameteg is made large. In this
is expected to correspond to localized states that don't,qe “the average density, calculated with Dyson’s mean-
Falk to eac.h ether and show a multifractal .behaV|or. Thesegq g approximation, behaves as
kinds of statistics are expected to be found in regular systems
and in the insulator phase of quantum disordered systems
[5]. A statistical model with these properties would be the
ensemble of large diagonal matrices whose elements are
Gaussian distributed. In this limit of large 8, however, the spacings between levels
In recent applications of statistical models of spectra, there not distributed according to Poisson but, instead, follow a
crossover from the WD to Poisson statistics has become aew Poisson-like distribution which is the same for the three
major issue. Since RMT ensembles are constructed by resymmetries classes, i.e., the orthogonal, the unitary, and the
quiring invariance with respect 1d(N), i.e., unitary transfor-  simplectic[11]. Some new properties are also exhibited by
mations, a direct way to generate ensembles to interpolatidie eigenvalues, such as lack of translational invariance and
RMT and Poisson statistics is to impose a condition thathe presence of a long-range correlation that prohibits two
breaks, by construction, this invariance. This is done by ineigenvalues from being located at symmetric distances from
troducing a preferred basis, which means, in practical termghe origin. These features and, also, the idea that there must
going from a complete matrix space to a subspace of spardee a connection between eigenvalue and eigenvector distri-
diagonal or near-diagonal, matrices. This procedure has bedmutions, have suggested that there should be a spontaneous
followed, for example, in the construction of deformed en-breaking of the rotational symmetf3].
sembled 6], of random band matrix ensemblgd, and also The purpose of this paper is to show analytically how this
of the ensembles of RefE3] and[9]. spontaneous symmetry breaking occurs and to present an
Another approach, quite different in principle, consists inalgorithm that generates numerically eigenfunctions with
trying to obtain the transition without breaking the rotationalbroken symmetry. This will be done by first constructing a
invariance of RMT. In this case, the eigenvalue distributionsolution of what one may call the inverse problem since,
has the usual RMT form contrary to the usual situation, here the distributions of ei-

1
p(X)OCM. 2
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genvalues and eigenvectors are given and from them, ther, finally [11],
probability distribution of the matrix itself is to be derived.

In other words, a meaning will be given to the formal equa- N B k
tion P16, - Ew=11 7 o0 Bl l&d-3

2

.0

1 The scaled eigenvalues therefore place themselves around
P(M):KNeXF{_ B tr(ln2|M|)}, G the points+k/2 for k=1,2, ... N, with the restriction that
symmetric sites are not occupied simultaneously, which im-
and it will then shown that in the limjg—c, the probabilty  plies in the long-range correlation cited above. This result
P(M) becomes singular, yielding, as a consequence, the Ithas been confirmed by numerical simulatighg].
calization of the eigenvectors. To be specific and to simplify Matrix elements are connected to eigenvalue and eigen-
the derivation, only the orthogonal cases 1, will be con-  vector components through the relation

sidered.
The U(N) invariance of the ensemble implies eigenvectors N o
completely isotropic in thé\-dimensional space with the re- M;; Ikzl xCiCj . (10)

strictions imposed by the normalization and the orthogonal-
ity. If we look at a particular eigenvector, saj,) of the
eigenvaluex,, and forget all others, the distribution of its
componentsCi=(i|x,) with respect to a set of base vectors
li), can be written as

Combining Eqs(10) and(4), we can write the probability of
a given diagonal elemem; as

k=1

N N

N
N
P(ck,cg,...,c§)=w—N’2r(§)5 1-> (cr)z}. (4) N
= X8 1—__21 (CHZIP(xq, . .. Xn). (11)
From this equation, the distribution o
N This equation establishes the general connection between the
F(—) probability distribution of diagonal matrix elements and the
P(y)= y~ Y21 y)(N-3)72 (5) probability distributions of the eigenvalues and eigenvectors
r 1 r N—1 when they are isotropically distributed.
2 2 To show how the breaking of the rotational invariance

occurs, it is instructive to begin by considering an ensemble
for the strengthy=C? follows, derived by integration into of 2x2 matrices. In this case, the components of the two
all components but one, which reduces to the well knowreigenvectors can be expressed as functions of the ahgle
signature of RMT, the Porter-Thomas lad4], for largeN.  which gives the direction of the eigenvector in the plane of
Considering now the eigenvalue distribution, E2).sug-  the base. In terms of, Eq. (10) becomes
gest the substitutiofl 1]

x=sgr(&)exp Bl ¢]) (6)

that maps the variables onto the domain(N/2)<¢
<(N/2). In terms of this new variable, the eigenvalue joint
probability distribution becomes

M ;=X; COS 0+ X, Sir’ 6,
M ;5= (X1 —X,)Sin # coséh, (12
M ,,=X; Sir? 6+ X, cos 6.

Keeping the two eigenvalues at fixed values,X,, the prob-

N
P(&1,....60)=Cy ex;{ ) (§§—|§k|)} ability P(M;,X;,X5) that the first diagonal matrix element
k=1 has a valueM ; is given by

le;[i Isartépexalpl¢;l) P(M11,Xq,Xp) = %szwdeé(Mn—xl cog 60— X, Sint o)
0

—sgr(&)exp Bl &l)]. (13)
Assuming the eigenvalues are ordered as or, after the integration,
the distribution can be rewritten as P(Mi1.1,%0) = Vo —M 1) (M=) 4

N
_ _ 2_ Introducing the scaled variables,, &,, and & with M
P(é1.82, - &) cNexr{ B2, (& kl@l)} ® L o) o@D, we have 2 1



RAPID COMMUNICATIONS

PRE 61 SPONTANEOUS SYMMETRY BREAKING INU(N) . .. R3293

exf B(| €] = [&)] 1
V{sgniéy) —sgri&)exd — B &l €D} V{sgrié)exd — B(l&| _|§|)]_59r(§2)eXF[_B(|§|_|§2|)£;_>)

1
P(f!&lle): ;

where it was assumed thét,|>|x,|. Taking the limit 3 N —(N2)+1 1
—, it follows that (21 Cf) N quf dky |k, N2 for =2
=
EUCTES IRV (16 N
. - .- H 2
which means that for larg@ the probability of finding a ><exp( 'kliZl Ci )
value ofM ¢, with a value other thaw,; vanishes. Replacing -
this value in the first Eq(12) we obtain the integrations in th€ variables are performed and we find
X1 SiP =X, Sirf 6, N 1
P(M;; ,x)=="N?r E) N N
which can only be satisfied #=0,7. For these two values, 2p<__ 1)sin—Tr
the matrix is diagonal and the eigenvectors are necessarily of 2 4
the formCk=+ 5, . . Ik, | V2~ 2gk
On the other hand, if the off-diagonal element is consid- % J L L ,
ered, we find the probability distribution —a JITEZ Vi (= M +kq) ]

4 where P stands for the Cauchy principal value. Since this
\/(X1 X,) _4|\/|§2' equation was derived without any assumption about the ei-
genvalues, it gives the general dependence of diagonal ma-

in which case, the angle has the val#es+ 7/4 or + 31/4. trix element distribution for isotropic eigenvectors.

Considering now ensembles with matrices of sizes greater To see how the limif3—o of our ensemble, i.e., eigen-
than 2, the integrals in the components in Etl) can be Vvalues distributed according to E(Q), introduces localiza-
performed by introducing Fourier representations for he tion in the above expression, we start by making the substi-
functions. Again keeping the eigenvalues fixed, we have thé&ution ky=|x,|k,, x;, denoting the largest eigenvalue

P(M12,X1,X2) =

probability distribution P(M;; ,X)
Xal ™ J oo [k = M) T + k[ Ty = My 1] [N
f f dkydk; exp(ik;Mj; +'k2), (17) We immediately see that fovl;; # x;, P(M;; ,x) vanishes
—w ) - ki?[i(klxﬁkz)] yvhen B—. On the othe_r hand, ?Miile then the above
integral can be asymptotically written as
making the substitutiok,=k;k, B(M. X)Nip oo dk,
P(M; )= WN’ZF(N> = f dkyky (V211 L R
which diverges because of the singularitykat=1. Now,

= dk, exfliky(M;; +kz)] making M;; = x4, Eq (10) becomes

X sgn(ky) == :
! f—x Hk;1[|(xk+k2)] z Xk) 1)2:0

Reintroducing the integrations in tizvariables, the integra-
tion in k, can be performed, giving & function that allows DIVIding it by x;, and taking the limit3—o, we find that
thek; integration also to be performed, and one arrives at thé:l 0 fork#1 so C'§= * 5.

expression Considering now the probability distribution of other ma-
N dNe trix elements, the eigenvalue, will be absent. Therefore,
P(M;; )= 7_rr\uzr(_) f - -z assumingx, to be the second largest eigenvalue, we are go-
2)) (=N, caHin-1 ing to find that the next matrix element, sa&,,, has to be

N equal to it and, as beforé;2 + d,. Proceeding with this
: 2 calculation, we are going to conclude what we want to prove,
>< — . N . . . .
ex;{ 12 (M; %) Ci } namely, that in the limit of largg, we have an ensemble of
diagonal matrices with completely localized eigenvectors of
Using the Fourier representatigph5] the formCk=+ 5.
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In principle, the same procedure can be used to discuss 08
what happens with the distributions of the off-diagonal ele-
ments. But it is more convenient to introduce here a different
approach. First we observe that the probability distribution of 04r
the matrix elements concentrates at the extremal values of
the matrix elements, as functions of the eigenvectors keeping
the eigenvalues fixed. To see that this is indeed the case in 03
the above results for the diagonal elements, let us maximize
Eq. (10) with i=]. Introducing a Lagrange multipliek, to
take into account the normalization of the eigenvector, we
get, by differentiation, the set i equations

P(y)

0.1}

(xc—N\)Ci=0, k=1N,

whose immediate solutions ake=x, and CL= + ;) with k 00
=1N, in agreement with prior results. 000 02 080 078 100
Considering now off-diagonal matrix elements, we need Y

three Lagrange multipliers to incorporate the two normaliza-
tions and the orthogonality condition. Differentiation, then,
leads to N equations

FIG. 1. Histograms of = C? for the two indicated values of the

parameterB. The solid line is the GOE result, E¢G). The calcu-

lations correspond to matrices of dimensidr 20.

(= A1) Ch—A2Cy=0, tribution changes dramatically, with a substantial increase in

_ _ the maximum at the origin and the appearance of peaks at
(Xk—A1)C+A3CL=0, k=1N y=3 andy=1, as predicted.

In conclusion, it has been analytically proven, and nu-
that have the solutions; = (x,+x)/2, N\;=\3=(X,—X;)/4,  merically verified, that completely isotropic eigenvectors can
andCL IZC{“: +1/\/2, where k,1) is a given pair of indi- become localized if the eigenvalues increase exponentially.
ces and the other components vanish. This result is general and confirms the predictj@3] that

Therefore, when the symmetry is broken, one should exthe U(N) invariance of a random matrix ensemble with a soft
pect the distribution of the strengtly=C?2, to be concen- confinement potentialy/(x) =(1/8)In’lx, is broken in the
trated at the pointyy=0,3,1. To verify this prediction, a limit of Iarg.e valugs of tr_]e'parametqﬁ‘.. R|go.rou.sly, .the
numerical simulation was performed whose results arereSUIt is valid only n t_he limit5—ce. An m_vestlga_ltlon Into
shown in Fig. 1. In the calculation, Gaussian orthogonal enyvhat happens for finite or even small is |apkmg. The
semblegGOES9, i.e., isotropic eigenvectors, were generatedmethOd' however, espeually its implementation as an algo-
and matrix elements were obtained using Ep) with ei- rithm to generate eigenvectors, opens the possibilty of a

genvalues given by, =exp(8k/2). To induce the symmetry more complete investigation of the crltlc_al point of disor

: L S dered quantum systems, using soft confinement ensembles.
breaking, a small perturbation is added by multiplying the AN

. 2 As a last remark, although for simplicity only the orthogonal
off-diagonal terms by the factor 0.99999. The matrix is then . : .
) ) ; . . case was considered, it should be straightforward to extend
diagonalized. That is how the two histograms of Fig. 1 Were, L nalvsis to the unitary and simplectic ensembles
obtained, while the solid line corresponds to GOE, i.e., Eq. y y P '

(5). As can be seen in the figure, the perturbation has no M.P.P. was supported in part by the CNPg-Brazil and
effect for smallB. However, for the value=40, the dis- FAPESP.
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